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Distributed SGD in the Data-Center Setting
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Parameter Server
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Worker 1 Worker 2 } .. Worker m

Data D, Data D, Data D,

o Dataset is shuffled and split equally across the worker nodes

o Parameter server waits to receive gradients from all nodes Async SGD,
Local SGD,

Overlap SGD

o Several works on improving the scalability of this framework :
etcC.




Data Collection at the Edge

[McMahan et al 2017, Kairouz et al 2019]

The next word

o Massive amounts of informative training data is being collected at edge devices
such as cell phones, tablets, 10T sensors etc.
o Sending these data to the cloud can be too expensive and slow

o Privacy laws may also forbid data sharing with foreign cloud servers



Federated Learning: Bringing Training to the Edge

[McMahan et al 2017, Kairouz et al 2019]

o Data stays on the device, and model training is

moved to the edge

\
g

Data D, Daia D

o Each edge client performs a few local SGD D D
updates, and the resulting models are Daia o,

aggregated by the central server l
Y

! !

e

o Better communication-efficiency and privacy

guarantees than sending all data to the cloud



Federated Optimization: Objectives and Notation

o Local Objective Function

1
Fi(x) = D, Z f(x;6)
L £eD; \\
o Global Objective is a weighted average of D D D

local objectives in proportional of data-sizes:

m Fi(x) Frn (%)
F(x) = ZPiFv;(X)

GOAL: Find xthat minimizes the
| D global objective

F(x) =) piFi(x)
=1

where p; =



Federated Optimization: The FedAvg Algorithm

o Raw data at clients cannot be shared to the server
due to privacy and communication constraints

SOLUTION: Perform t local updates at each client and »\\‘

only share the resulting model with the server



Federated Optimization: The FedAvg Algorithm

o Raw data at clients cannot be shared to the server
due to privacy and communication constraints

SOLUTION: Perform t local updates at each client and »\\‘
only share the resulting model with the server D D D
FedAvg Algorithm ¥

gAg T steps M M
In each communication round: M v v
1. Sendthe current model to clients X"Eltﬂ) X(‘{H) X(‘{H)

2. Clients perform 7 local updates using their data

How is this algorithm affected by

3. Updated models are aggregated by the server heterogeneity in the system?

(o]



Sources of Heterogeneity in Federated Learning

1. Data Heterogeneity

2. Communication Heterogeneity

3. Computational Heterogeneity »\\‘
v v v
T steps
Due heterogeneous datasets and v v v
objective functions, local models |
drift apart as T increases 11 4 v
0 e



Sources of Heterogeneity in Federated Learning

1. Data Heterogeneity

2. Communication Heterogeneity

3. Computational Heterogeneity

. . . . v v v
C'm participating clients

Thousands of clients that are intermittently available

SOLUTION: Partial participation of Cm clients,
selected from among the available clients
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Sources of Heterogeneity in Federated Learning

1. Data Heterogeneity

2. Communication Heterogeneity

3. Computational Heterogeneity »\\4

rT ]

o Different computation speeds and memory ¥

o Different learning rates or adaptive local optimizers

Variable number of
local updates
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Sources of Heterogeneity in Federated Learning

1. Data Heterogeneity

2. Communication Heterogeneity

3. Computational Heterogeneity »\\‘
Fy(x) F (%)
THIS TALK
How do these sources of heterogeneity GOAL: Find x that minimizes the

affect federated optimization global objective

algorithms and analyses? F(x) = zmzpiFi (x)
i=1
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1. Data Heterogeneity

£(10)

T=1 & ~ rﬂii
N
case Largert N e o
case \ O
W
/
A /4
Each client’s gradient moves its model The global model becomes the
towards its minima, but the averaged average of the local minima,
gradient leads to the global optimum x* which may differ from the true
optimum x*
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1. Data Heterogeneity
Client Drift Error and How to Mitigate it

For bounded gradient dissimilarity, thatis, ||V F;(x) — VF(x)||* < o, errorfor T
communication rounds is:

F(x©) — F~ Lo?
min  E[|VF)|? <O ( ) ) + O (77 A n*L* (1 — 1)02>
Tl m

+ O (772L2T(T — 1)03)

.. : _ Client Drift Error
Methods to Mitigate Client Drift Error

o Setting a small T and/or smalln

o Adapting T over rounds [AdaComm 2019]

o Adding correction to pull back drifted models [FedProx,2020], [SCAFFOLD, 2021] etc



[Jhunjhunwala et al

1. Data Heterogeneity [CLR 2023, spotlight talk]
FedExP: Adapting Server Learning Rate

* Slowdown due to small client learning rate

can be compensated by a larger server
learning rate (default value 1 in FedAvg) \\4
* We propose the following adaptive D D D
schedule based on the Extrapolated Parallel -4 steps | v
Projection method (EPPM) [Pierra 1984] | | |

m ()2 S KD )
b — ma (1, Ty e ) - .

2m((lx —x; || + ¢€) "
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1. Data Heterogeneity [Jhunjhunwala et al

ICLR 2023, spotlight talk]

FedExP: Adapting Server Learning Rate

—— FedExP (ours) —— FedAvg —— SCAFFOLD —— FedAdagrad
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1. Data Heterogeneity
Open Questions and Ongoing Work

Qz: Is gradient dissimilarity assumption too pessimistic?

o In practice, FedAvg outperforms SGD, even though the
client drift error increases with t '\\‘

o [Wang et al 2022] proposes a different data heterogeneity

measure called average drift at optimum
F1 ) v FTQ,(X)
T steps

| o
!

v v
th—l—l) D) Xgﬂ)

1
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1. Data Heterogeneity
Open Questions and Ongoing Work

For bounded gradient dissimilarity, thatis, ||V F;(x) — VF(x)||* < o, errorfor T
communication rounds is:

(0)\ _ * 2
min E[||VF<X“>>H2]§0(F(X ) F)w("“ +772L2(T—1)02>
Tl m

+ O (nQLQT(T — 1)03)

Q2: Is client drift the dominant error term? Client Drift Error

o With small learning rate, it decays faster than other terms

o Partial participation error is higher order (as we see next)
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Sources of Heterogeneity in Federated Learning

1. Data Heterogeneity

2. Communication Heterogeneity

3. Computational Heterogeneity

. . . . v v v
C'm participating clients

Thousands of clients that are intermittently available

SOLUTION: Partial participation of Cm clients,
selected from among the available clients

19



2. Communication Heterogeneity
Partial Client Participation Error

o InFedAvg, fraction C of the clients chosen

uniformly at random participate in each round \\‘
o The error after T communication rounds isas D D D
given by F (%)
F(x) - p~ nLo?
i EIV E(x)|I?2 < O 2720~ _ 1)g2
te{of].[.l.l,%ﬂ—u IVEG)IT =0 ( ntT ) i ( Cm T LT =)o
ntL(1— C)o? 59 5
+ O 2l +0 (n°L°r(t — 1)o
Partial Client < C(m —1) ( g)

Participation Error Client Drift Error
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2. Communication Heterogeneity
Partial Client Participation Error

o InFedAvg, fraction C of the clients chosen

uniformly at random participate in each round \\‘
o The error after T communication rounds is D D D
o After setting learning rate appropriately, we get Fon(x)

ONE 1 T 1 IDEA: Mitigate this
tn&}% WIWEIE=© (\/M77T> t e ( W) +0 (T) termusing

\ ~ - \ V - —— correlation in client
stochastic noise partial participation client drift updates across
Dominates rounds, like SAGA
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2. Communication Heterogeneity
FedVARP: Reducing Participation Variance [Fedvarp,

UAIl 2022]

Server
Memory

Yi

1. Update node state in server memory

(D) AV if j e S®
J y(®) otherwise

Vj € [N]

(tT
X

A(t) — () _

Key Idea: Use latest observed
update {yg.t)}j-vzo for each node as
proxy for current update.
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2. Communication Heterogeneity
FedVARP: Reducing Participation Variance iredvare,

UAIl 2022]
1. Update node state in server memory Server
INCETE c St | Memory
= { 0 S Vj € [N] Yi
y'" otherwise
2. Compute variance-reduced update:
! . LN D D D
(t) _ (A t) _ L ¢
v ) yz )+ Yy

3. Update global model:
P s Key Idea: Use latest observed

(1) — () _ UgV(t) update {yﬁ-t)};\fzo for each node as
proxy for current update.
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2. Communication Heterogeneity
FedVARP: Convergence Analysis and Results

o By using the variance-reduced update that Server
Memory
includes all clients’ updates, FedVARP Y

eliminates partial client participation error

Partial Client

Participation Error
24



Test Accuracy

2. Communication Heterogeneity

<
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FedVARP: Convergence Analysis and Results

o Can we reduce server storage cost?

o Yes!ClusterFedVARP reduces storage by clustering

clients and maintaining a single state per cluster.

- MIFA
—&— FedVARP
FedAvg
—+— SCAFFOLD

—¥— ClusterFedVARP
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FedVARP
FedAvg
—— SCAFFOLD
—¥— C(ClusterFedVARP

0 250 500 750 1000 1250 1500
Communication rounds

i) Training ResNet-18 on CIFAR-10

Server
Memory
Yi
FedVARP outperforms
FedAvg and client drift
mitigation methods like
SCAFFOLD
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2. Communication Heterogeneity
Client Selection in Federated Learning [Choetal AISTATS 2022]

o Unbiased Selection: If we sample

clients with probability p; with

replacement we have unbiased

sampling, i.e. E[F(x)] = F(x)
Most works consider this scenario,
and many prior results with full
client participation can be

extended to this setting

Global Objective
K

ZpiFi(X) \

Data D, Data D,
F (x) Selected Subset S EF (X)

Can we improve convergence by biasing

client selection towards higher loss clients??
26



2. Communication Heterogeneity
Biased Client Selection can Speed-up Convergence

Unbiased Random Selection Biasing Selection towards high loss clients
Iy (x)

client selected: Fi(x) < Fo(x) = Fi(x) > Fa(x)
222212122 select 2 select 1

o Biasing towards higher loss clients gives faster convergence

o But will too much selection skew result in a higher solution bias?

27



2. Communication Heterogeneity
Measure Skew of a Client Selection Strategy

Selection strategy 7T maps the current global model to a selected set of clients S(, x)

Selection Skew is measured in terms of the following quantities

p = min p(S(m, z), ') p = max p(S(m, x), ")

Esr; Y resire) Fr(@) — F)]

/
where p(S(m, x), ') = / = - >0
unb:ased
biased towards clients ‘ biased towards clients
with lower loss with higher loss

28
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2. Communication Heterogeneity
Convergence with Biased Client Selection

Convergence guarantees for any client selection strategy for L-smooth and p-

strongly convex functions:
data heterogeneity

Error after T rounds < O (1) + O (F (p — 1))
Tp p

H_/ — U
YT
convergence non-vanishing
rate bias

Observations:
o More selection skew p > 0 brings faster convergence

o But too much selection skew increases the non-vanishing biasterm I' =0

o To get zero solution bias, we need p = p = 1 (homogeneous data) or an
unbiased selection strategy

29



2. Communication Heterogeneity

Power-of-d choices Client Selection [cho etal AISTATS 2022]

Step 1. Sample clients to candidate set A of size d with probability p;,
Step 2. Estimate Local Losses of clients in set A for current global model

Step 3. Select the Cm clients with the largest local losses

§ |
SCEEE > e

o Settingd = Cm is equivalent to unbiased client selection

o Connected to mini-batch sampling techniques used in single-node SGD training 20



2. Communication Heterogeneity
Power-of-d choices Client Selection

Step 1. Sample clients to candidate set 4 of size d with probability p

Step 2. Estimate Local Losses of clients in set A for current global model

Step 3. Select the Cm clients with the largest local losses

m =30, Cm =2 : m =30, Cm =1 m =30, Cm =3
|
rand rand ) rand
22 ——- pow-d, d=4 % —-—+ pow-d, d=2 g ) —-— pow-d, d=6
e pow-d,d=20 =2 W || --- pow-d,d=10 = | = ---- pow-d, d=30
Ra) O O
2 2 S
0 250 ~ 300 750 0 25 500 750 0 250 500 750
Communication round Communication round Communication round

Larger d gives
faster convergence,
but slightly higher
erorr floor
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2. Communication Heterogeneity
Power-of-d choices Client Selection

Step 1. Sample clients to candidate set A of size d with probability p;, We have comp.

and comm.
Step 2. Estimate Local Losses of clientsin set A for current global model  efficient variants
_ _ of this step
Step 3. Select the Cm clients with the largest local losses
Less Data Heterogeneity More Data Heterogeneity
M=100,C=0.03 m=100, C=0.03 s M=100,C=0.03 m=100, C=0.03
o s s -0.1 rgean | 0.1
70 ’a;‘:"a?:"‘:‘:_"“ . = rand 70 ‘ﬂp’\fl" e - — rand
o i ., 02 — = pow-d, d=15 > /d ” 02 — = pow-d, d=6
:c:)s 60 § —0.3 === cpow-d, d=15 § § —0.3 === cpow-d, d=6
§ 50 rand 0 04 N U rpow-d, d=50 § 50 rand 04 N U rpow-d, d=50
S 40 = pow-d, d=15 = S 40 === pow-d, d=6 é
% " - cpow-d, d=15 S0 % ==+ cpow-d,d=6 | &S 05
= I'pOW-d, d=50 = —0.6 = 3004 ..., rpow-d, d=50 = 06
20 afl 07 20 — afl ~0.7
1% 200 400 0 200 400 107 200 400 0 200 400

Communication round Communication round Communication round Communication round 3?2



2. Communication Heterogeneity
Open Directions in Client Selection

Qzx: Can loss-aware and/or non-uniform

client selection improve fairness?

o Yes, power-of-choice client selection
improves fairness

Q2: Can loss-aware and/or non-uniform
client selection improve robustness to

adversarial clients?

o Yes, biasing towards lower loss clients
can improve robustness

Global Objective
K

Zpin'(X) \




2. Communication Heterogeneity
Cyclic Client Participation  [choetalicML 2023]

o Clients have a cyclic availability pattern

based on location or timezone Global Objective
K

o Defies the uniform sampling with ZPin‘(X) h
replacement assumption made by most

current FedAvg convergence analyses,

which show an O(2/T) convergence with

num. of comm. rounds T Round 1 Round 2

Q: How does cyclic client participation affect FedAvg convergence?



2. Communication Heterogeneity
Cyclic Client Participation  [choetalicML 2023]

First analysis with cyclic participation in FL

Technique based on [Yun 2022] on shuffled SGD Global Objective

Fx) = Y piFi(x) )
1=1
o Clients selected per round: Cm @

O(2/T?) instead of Full participation

O(a2/T) conv. rate within each group
Round 1

o Total number of clients: m

o Number of client groups: K

For local GD,

K2(F(xO) —F*) . (k2K —1)%a? - 2 /1 =
(T = F* < =
E[F(x)] - F* < — +0 ( W ) +0 ( L 1




2. Communication Heterogeneity

Cyclic Client Participation

o EMNIST, Number of client groups: K

Test Accuracy

.\.
¥ ]
owon

Al Al &I Xl

0 500 1000
Communication Rounds

(a) GD

§60
E
9
- e o
‘/'.—'—- _— K= < .
40 = §=5 é /
_ - K=10|| "
| - k=20|| 2}
20
0 500 1000 0

Communication Rounds

L
!
!
I
|

ﬂ

[Cho et al ICML 2023]

|
N = U =
o o

Al &Rl x| Xl

500 1000

Communication Rounds

(b) Local SGD (c) Shu

led SGD



Sources of Heterogeneity in Federated Learning

1. Data Heterogeneity

2. Communication Heterogeneity

3. Computational Heterogeneity »\\4

rT ]

o Different computation speeds and memory ¥

o Different learning rates or adaptive local optimizers

Variable number of
local updates
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3. Computational Heterogeneity

0 Homogeneous setting

|
|
: :
|
§\ l %
———%64—1,0) :
|
|
|
|
|

A O A,
* k 1
x5 T

Cannot be fixed by the techniques
used to tackle data heterogeneity

In [FedNova, NeurlPS 2020] we analyze a generalized FedAvg algorithm and show that

True Global Objective Mismatched Global Objective
N SN T |
F(x) =Y~ Fi(x) P@) =} s —F(@)

=1
= > piFi(x) . . .
; Need to fix the aggregation weights! .



3. Computational Heterogeneity
A Generalized Version Qf the FedAvg algorithm

(t 4)

|
(1)
A1 EEE— | —ndgt) _ A?)/Tl
(t,0) ' s
----------- I --*-- L B |
(1.0) -

_ ) t,4
-~ Average normalized [T ¢ wg )

\ P ’(H—l,O) gradients instead of local
Voo " changes Sy 0 0
(.20~ () @t
z ) !

FedNova Update Rule
m mo (D)

pH10) — . (80) | ZPiAz@ L (F1.0) — 5(8.0) 4 Teffzpi A,
1=1 ]

‘ Teff :; ;pm

Optimizes F Z me () Optimizes  p(g) = Zpinz(iL’)

1 1p'l7-'l,

FedAvg’'s Update Rule

T;




3. Computational Heterogeneity

Different, T=94,C=1

Random local epochs, C=0.3

2.25 2.25
o 2.00 — FedAvg o 2.00-
S 1.75- k\ —— FedProx (u=1) S 1.751
o>1.504; — - FedNova 5 1.50-
c I - |
S1.254 ' S1.25
=1001 \ °~ =1.00-
E ' 1 \‘sh__ E - v, :\F*\
I_O.75 \.~ ——— - |_0-75— %‘\ h\.-'--‘____
0-50_ | l.w.*l —-l—-—.l 0_50— .J‘\“c--—-
0 50 100 150 200 0 50 100 150 200
Communication rounds Communication rounds
Local Epochs Client Opt. Test Accuracy 7
FedAvg FedNova FedNova works with various local
£ o_o Vanilla 60.68-1.05 66.31+0.86 _ _
o Momentum  65.26+2.42  73.324-0.29 solvers: vanilla SGD, proximal SGD,
(16 =7 =498 proximal [38] 60.44+1.21  69.92-+0.34
Vanilla 64.2241.06 73.22+0.32 SCAFFOLD/VRL, Momentum etc.
ORI Momentum  70.44+2.99 77.07+0.12
i ~U25) proximal [38]  63.74:41.44 73414045 We extend this to local adaptive
(16 < = < 1020) VR [20] 74.724+0.34  74.72+0.19 o .
Momen.+VR  Not Defined 79.19+0.17 optlmlzers In [Wang et al 2021]
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Summary and Key Takeaways

1. Data Heterogeneity
2. Communication Heterogeneity

3. Computational Heterogeneity

o Allowing heterogeneity makes the system
more scalable and flexible

o Heterogeneity-aware algorithms can
ensure fast convergence in the presence of
heterogeneity

s g C

Fl(X) Fm(X)

GOAL: Find xthat minimizes the
global objective

F(x) = ZPiFi(X)
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Some Ongoing and Future Directions

Allowing Model Heterogeneity [Lin 2022, Cho 2022]

Concept Drift at Clients [Jothimurugesan et al 2022] »\\‘
Personalized Federated Learning [Li 2021, Cho 2022] D D D
F1 (X) Fm(X)

Incentivizing Clients to Participate [Cho et al 2022]

GOAL: Find xthat minimizes the

global objective

Modify this objective

F(x) = ZPin‘(X)
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